# Modifying WWTPs to Achieve Nitrogen Removal

April 26, 2017 Murfreesboro, TN

Wave Four Energy Management Workshop

Larry W. Moore

# Organisms and Their Means of Respiration

- Aerobic use elemental oxygen
- ◆ Anoxic use nitrate (NO<sub>3</sub>) or nitrite (NO<sub>2</sub>)
- Anaerobic use other terminal electron acceptors (SO<sub>4</sub>, CO<sub>2</sub>) or none at all
- Facultative two or more means of respiration
- Fermentative no terminal electron acceptor

#### **CBOD** Removal

- Heterotrophic
- Aerobic, anoxic, anaerobic
- Floc formers

### **Nitrification**

- Autotrophic
- Aerobic
- Not floc formers

#### Denitrification

- Heterotrophic
- Anoxic (facultative)

#### **Denitrification Reactions**

For one gram of NO<sub>3</sub>-N that is denitrified:

2.47 g of methanol (~3.7 g of COD) are consumed

0.45 g of new cells are produced

3.57 g of alkalinity are formed

## Denitrification: Biochemical Reactions

Sewage as carbon source:

$$C_{10}H_{19}O_3N + 10NO_3^- \rightarrow 5N_2 + 10CO_2 + 3H_2O + 10OH^- + NH_3$$

### Factors Affecting Denitrification

- Substrate degradability
- pH
- Dissolved oxygen
- Temperature

### **Impact of DO on Denitrification Rates**

| DO CONC, Mg/L |
|---------------|
|---------------|

#### **Denitrification Rate**

| 0.0 | 100% |
|-----|------|
| 0.1 | 40%  |
| 0.2 | 20%  |
| 0.3 | 10%  |

### Oxygen Savings with Denitrification

For every gram of NO<sub>3</sub>-N that is reduced to nitrogen gas, 2.86 grams of oxygen are saved.

## Performance of Single-Sludge Denitrification

- Can achieve high N removals (85% to 95%)
- Does not necessarily enhance sludge settleability in final clarifier
- Uses carbon source in influent
- Reduces the energy requirements for BOD removal from the wastewater (2.86 lb O<sub>2</sub> equivalent per lb of NO<sub>3</sub>-N removed)
- About one-half of alkalinity required for nitrification is produced in anoxic zone

# WWTP Changes to Achieve Nitrification-Denitrification

- Modify rectangular aeration basin with baffles to provide anoxic and aerobic zones
- Modify oxidation ditch to provide anoxic and aerobic zones
- Modify oxidation ditch operation with on/off aeration cycles to achieve denitrification
- Modify SBR system to include anoxic and aerobic cycles
- Modify step-feed system to include alternating anoxic and aerobic zones

### Rectangular Aeration Basin



### **Modified Rectangular Aeration Basin**



### Oxidation Ditch Before Modification



### Oxidation Ditch After Modification



## Intermittent Aeration for N Removal in Oxidation Ditch

- Cycle time for on/off operation of aerators may vary
- Process control with DO and ORP monitoring
- When aerator is off, must provide mixing
- During off period, oxidation ditch becomes anoxic reactor, and nitrate is consumed as bacteria degrade BOD
- ORP data are used to terminate off cycle and start aeration

# Change in ORP and DO in On/Off Operation



### Factors Affecting On/Off Operation

- Oxidation ditch HRT
- Influent flow rate
- TKN and BOD concentrations
- Number of on/off cycles per day
- Ditch MLSS concentration

# Nitrogen Removal in Oxidation Ditch Using DO Control

#### **Expected Effluent Quality:**

BOD<sub>5</sub>

TSS

Ammonia-N

NO<sub>x</sub>-N

Total N

5 - 15 mg/L

10 - 20 mg/L

< 1 mg/L

5 - 10 mg/L

7 - 14 mg/L

## Actual N Removal in Oxidation Ditches

| <u>WWTP</u> | <u>TKN</u> | <u>NH<sub>3</sub>-N</u> | <u>NO</u> <sub>3</sub> -N | N rem % |
|-------------|------------|-------------------------|---------------------------|---------|
| Α           | 3.1        | 1.4                     | 19.3                      | 2       |
| В           | 1.6        | 0.9                     | 2.3                       | 86      |
| С           | 2.5        | 1.1                     | 9.7                       | 51      |
| D           | 3.9        | 1.9                     | 8.3                       | 80      |
| E           | 3.3        | 0.5                     | 12.4                      | 72      |

### Nitrogen Removal in SBRs

- Use anoxic and aerobic cycles to effectively remove nitrogen
- Cycles are:
  - Fill (anoxic)
  - React (aerobic/anoxic)
  - Settle
  - Decant

### Nitrogen Removal in SBRs

#### **Expected Effluent Quality:**

BOD<sub>5</sub>

**TSS** 

Ammonia-N

NO<sub>x</sub>-N

Total N

5 - 15 mg/L

10 - 20 mg/L

< 1 mg/L

3 - 10 mg/L

5 - 12 mg/L

### N Removal in Step-Feed Process



### Conventional Activated Sludge



# Add an Anoxic Zone using Baffle, Mixed Liquor Return, and Mixing



### Before and After Effluent Quality

|                    | <u>Before</u> | <u>After</u> |
|--------------------|---------------|--------------|
| BOD <sub>5</sub>   | 5 - 25 mg/L   | 5 - 15 mg/L  |
| TSS                | 10 - 25 mg/L  | 10 - 20 mg/L |
| Ammonia-N          | 1 - 5 mg/L    | 1 - 2 mg/L   |
| NO <sub>x</sub> -N | 8 - 15 mg/L   | 3 - 9 mg/L   |
| Total N            | 10 - 20 mg/L  | 5 - 12 mg/L  |
| *SVI               | 125 - 225     | 50 – 125     |

<sup>\*</sup> impacts on mixed liquor at one facility

### Principles in Implementing N Removal

- Consider a wide variety of alternatives
  - use on/off operation of aeration units
  - add anoxic zone and mixed liquor recirculat'n
  - optimize anoxic/aerobic periods
  - adjust SRT to enhance nitrogen removal
- Invest in plant-specific waste characterization data
- Engineer and operators should discuss changes
- Tailor to specific plant situation
- Balance risk and cost

### Case Study: Pell City, AL WWTP

Single Oxidation Ditch Design flow rate (ave daily) = 4.75 mgd Actual flow rate (ave daily) = 2.2 mgd Influent BOD<sub>5</sub> concentration = 170 mg/L Influent TSS concentration = 260 mg/L Influent TKN concentration = 30 mg/L Volume of the ditch = 2.0 mil gal

### Pell City, AL WWTP



### Pell City, AL WWTP



## Previous Operating Conditions at Pell City, AL WWTP

Actual aeration basin detention time = 22 hrs F/M ratio = 0.045 lb BOD<sub>5</sub>/(day-lb MLVSS) VOLR = 11.7 lb BOD<sub>5</sub>/(day-thou cu ft) Solids Retention Time (SRT) = 50 days MLSS concentration = 5,800 mg/L MLVSS concentration = 4,100 mg/L TSS sludge production = 1,770 lb/day Oxygen requirements = 6,200 lb/day

### Previous Operating Conditions at Pell City, AL WWTP

Oxygen supplied = 6,000 lb/day (three 50-hp rotors running 24/7)

Effluent  $CBOD_5$  conc = 4 mg/L

Effluent TSS conc = 8 mg/L

Effluent amm-N conc = 0.2 mg/L

Effluent TKN conc = 1 mg/L

Effluent Total P conc = 0.7 mg/L (w/ alum)

Effluent  $NO_x$  conc = 15 mg/L

Effluent Total N conc = 16 mg/L

### **Denitrification at Pell City, AL WWTP**

Turn three 50-hp rotors off 5 hours per day

```
Estimated energy savings = 14,400 kWh/mo
Estimated cost savings = $1,700/mo (12%)
Current effluent NO<sub>x</sub> conc = 10 mg/L
Current effluent Total N conc = 11 mg/L
Reduction in effluent Total N = 92 lb/day
= 17 tons/year
```



